Calculator Skills: Minimum and Zeros

1. Given: $y=3 x^{2}-12 x+9$

- Start a New Document.
- Open Graphing.
- Graph the function. Does the function fit your window; can you see the important parts of the function: zeros, minimum point.
Adjust your window if necessary:
- Menu
- 4: Window
- 1: Window Settings
a) Steps to find the minimum point.

i. menu
ii. Go to 6: Analyze Graph
iii. Go to 2: Minimum
- Move your cursor to the Left of the lowest point, click.
- Move your cursor to the Right of the lowest point, click.
- Your calculator shows the minimum point; the x and y value for your Vertex. The y - value is the minimum of the function.
b) Find the zeros.
i. menu
ii. Go to 6: Analyze Graph
iii. Go to 1: Zero
- Move your cursor to the Left of the one point on the x-axis, click.
- Move your cursor to the Right of that point on the x-axis, click.
- Your calculator shows you the zero point; the y - value is zero. The x-value is what we are looking for.
iv. Repeat this process to find the $2^{\text {nd }}$ zero, if necessary.

Calculator Skills: Maximum and Zeros

2. Given: $y=-x^{2}-4 x+5$

- Start a New Document.
- Open Graphing.
- Graph the function. Does the function fit your window; can you see the important parts of the function: zeros, maximum point.
Adjust your window if necessary:
- Menu
- 4: Window
- 1: Window Settings
a) Steps to find the maximum point.

i. menu
ii. Go to 6: Analyze Graph
iii. Go to 3: Maximum
- Move your cursor to the Left of the highest point, click.
- Move your cursor to the Right of the highest point, click.
- Your calculator shows the maximum point; the x and y value for your Vertex. The y - value is the maximum of the function.
b) Find the zeros.
i. menu
ii. Go to 6: Analyze Graph
iii. Go to 1: Zero
- Move your cursor to the Left of the one point on the x-axis, click.
- Move your cursor to the Right of that point on the x-axis, click.
- Your calculator shows you the zero point; the y - value is zero. The x-value is what we are looking for.
iv. Repeat this process to find the $2^{\text {nd }}$ zero, if necessary.

