Calculator Skills: Minimum and Zeros

1. Given: $y=3 x^{2}-12 x+9$

- We want to graph this function on a X:[-10,10,1] Y:[-10,10,1] Window
- Make sure all the other functions are cleared out of $[y=]$ and enter the given function.
- Graph the function. Does the function fit your window; can you see the important parts of the function: zeros, minimum point.

a) Steps to find the minimum point.
i. CALC ($2^{\text {nd }}$ TRACE)
ii. Go to 3: minimum
iii. Look at your graph and predict the x-value for the minimum.
- Enter an x-value for a number Left of your prediction (less
 than the predicted x-value).
- Enter an x-value for a number Right of your prediction (larger than the predicted x-value).
- Guess? No need to guess; Hit ENTER. Your calculator shows the x and y value for your Vertex. The y - value is the minimum of the function.
b) Find the zeros.
i. CALC (2 ${ }^{\text {nd }}$ TRACE)
ii. Go to 2: zero
iii. Look at your graph and predict the smallest of the two x-values for the zeros.
- Enter an x-value for a number Left of your first
 prediction (less than the predicted x-value).
- Enter an x-value for a number Right of your first prediction (larger than the predicted x-value).
- Guess? No need to guess; Hit ENTER. Your calculator shows the x and y value for your Zero. The y - value is zero and the x-value is what we are looking for.
iv. Look at your graph and predict the largest of the two x-values for the zeros. Repeat the enter an x - value to the Left and an x - value to the Right; Guess.

Calculator Skills: Maximum and Zeros

2. Given: $y=-x^{2}-4 x+5$

- We want to graph this function on a X:[-10,10,1] Y:[-10,10,1] Window
- Make sure all the other functions are cleared out of $[\mathrm{y}=$] and enter the given function.
- Graph the function. Does the function fit your window; can you see the important parts of the function: zeros, maximum point.

a) Steps to find the maximum point.
i. CALC ($2^{\text {nd }}$ TRACE)
ii. Go to 4: maximum
iii. Look at your graph and predict the x-value for the maximum.

- Enter an x-value for a number Left of your prediction (less than the predicted x-value).
- Enter an x-value for a number Right of your prediction (larger than the predicted x-value).
- Guess? No need to guess; Hit ENTER. Your calculator shows the x and y value for your Vertex. The y - value is the maximum of the function.
b) Find the zeros.
i. CALC ($2^{\text {nd }}$ TRACE)
ii. Go to 2: zero
iii. Look at your graph and predict the smallest of the two x-values for the zeros.
- Enter the x-value for a number Left of your first
 prediction (less than the predicted x-value).
- Enter the x-value for a number Right of your first prediction (larger than the predicted x-value).
- Guess? No need to guess; Hit ENTER. Your calculator shows the x and y value for your Zero. The y - value is zero. The x -value is what we are looking for.
iv. Look at your graph and predict the largest of the two x -values for the zeros. Repeat the enter an x - value to the Left and an x - value to the Right; Guess.

