A. Set a window to match the axes shown and graph the quadratic function on your calculator:

$$y_1 = 0.5x^2 + 3x - 2$$
 OR $f_1(x) = 0.5x^2 + 3x - 2$

- 1. My estimate the x-value for the vertex is _____.
 - Use your calculator to find the minimum of this function, rounded to nearest hundredth if necessary.
 - o What are the coordinate of the vertex?
 - What is the equation for the axis of symmetry?
 - What is the range?
- 2. My estimate for the smallest of the x-intercepts is ______.
 - Use your calculator to find the smallest zero of this function (rounded to the nearest tenth).
- 3. My estimate for the largest of the x-intercepts is _____.
 - Use your calculator to find the largest zero of this function (rounded to the nearest tenth).
- 4. My estimate for the y-intercept is _____.
 - $\circ\quad$ Use your calculator to find the y-intercept (rounded to the nearest tenth).

B. Graph a second function: $y_2 = 5$ OR $f_2(x) = 5$

- o Find the two x-values where the two functions "Intersect"
 - Smallest x-value, rounded to nearest tenth: _____
 - Largest x-value, rounded to nearest tenth: ____
- C. Use the data to find an equation and graph a quadratic function:

Window to match the given grid.

Regression Information:

$$a = b =$$

$$c =$$

equation:

X (list 1)	Y (list 2)
-6	7
-5	0
-4	-5
-3	-8
-2	-9
-1	-8
0	-5
1	0
2	7

