5.2 Tally Charts, Histograms \& Frequency Polygons

Weekly wages in \$	Tally marks	Frequency
of 25 workers		
220-234	d	2
235-249	W	3
250-264	HKJ	7
265-279	W	3
280-294	H\% ${ }^{\text {W }}$	8
295-309	1	1
310-324	1	1
Total		25

- Set up a tally chart (intervals, tally, and frequency). Work through the data - tally the interval for each value. Record tally value as a number. If you are not given the number of intervals to use, we will use a maximum of 10 intervals.
- The last number in the row is the end value for that interval. If using 10 intervals, divide the range by 10 and round up to a nice number to work with.
- For the Histogram:
- Set up the horizontal axis to represent the interval widths and the vertical axis for the frequency.
- Give your graph a title. Draw the bars for the histogram.
- Frequency curve
- Method 1: replicate the horizontal and vertical axis from the histogram; plot a point at the median value and frequency height for each interval; join the points (smooth or straight line)
- Method 2: place a point in the top middle of each interval on the histogram; join the points (smooth or straight line)

Question for practice, text page 241-250:

The following data represents the flow rates of the Red River from 1950 to 1999, as recorded at the Redwood Bridge in Winnipeg, Manitoba.

Maximum Water Flow Rates for the Red River, from 1950 to 1999, Measured at Redwood Bridge*

Year	$\begin{aligned} & \text { Flow } \\ & \text { Rate } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Year	$\begin{aligned} & \text { Flow } \\ & \text { Rate } \\ & \left(\mathrm{m}^{3} / \mathrm{s}\right) \end{aligned}$	Year	Flow Rate ($\mathrm{m}^{3} / \mathrm{s}$)	Year	Flow Rate ($\mathrm{m}^{3} / \mathrm{s}$)	Year	Flow Rate ($\mathrm{m}^{3} / \mathrm{s}$)
1950	3058	1960	1965	1970	2280	1980	881	1990	396
1951	1065	1961	481	1971	1526	1981	159	1991	280
1952	1008	1962	1688	1972	1589	1982	1458.	1992	1399
1953	357	1963	660	1973	530	1983	1393	1993	946
1954	524	1964	1002	1974	2718	1984	1048	1994	1121
1955	1521	1965	1809	1975	1671	1985	991	1995	1877
1956	1974	1966	2498	1976	1807	1986	1812	1996	3058
1957	654	1967	1727	1977	187	1987	2339	1997	4587
1958	524	1968	510	1978	1750	1988	564	1998	1557
1959	991	1969	2209	1979	3030	1989	1390	1999	2180

(*assumes NO flood protection works in place, for data after 1969 when the flosearch Council Canada

Monique's Solution: Creating a trequency pol

Flow Rate $\left(\mathbf{m}^{3} / \mathbf{s}\right)$	Midpoint	Frequency (number of years)
$150-600$	375	11
$600-1050$	825	9
$1050-1500$	1275	6
$1500-1950$	1725	12
$1950-2400$	2175	6
$2400-2850$	2625	2
$2850-3300$	3075	3
$3300-3750$	3525	0
$3750-4200$	3975	0
$4200-4650$	4425	1

[^0]In the space below, label and draw a histogram of Monique's data. Use as many sections (ticks) as necessary.

Flow Rate

Use the histogram to draw a frequency polygon of the same data.

PRACTISING

3. A cherry orchard has 30 trees with these heights, given in inches.

78	70	83	79	74	81	80	65	66	76
85	82	74	63	75	76	86	80	72	72
80	69	71	80	77	81	75	75	64	87

a) Make a frequency table with six intervals to organize the heights.
b) Construct a histogram of the data.
c) Which range of heights occurs most frequently? Which occurs least frequently?

- Find the shortest tree, circle this height.
- Find the tallest tree, circle this height.
- Find the range and divide by 6 (six intervals). Round to a good number and start your table:

Height of Cherry Trees	Tally	Frequency

[^0]: 244 Chapter 5 Statistical Reasoning

