Name: _____

Math 20-2 Quadratic Function Properties: Part Two

- 1. Given the graph of the function:
 - find the vertex
 - sketch in the axis of symmetry and write the equation for the axis of symmetry
 - plot and identify **3** other points on the graph using the property of symmetry
 - identify the x intercepts (on the graph, coordinates)
 - identify the y intercept (on the graph, coordinates)
 - write the domain and range

- 2. Given the equation of the quadratic function:
 - find points to plot using algebra or trace or a table of values
 - identify the x intercepts (on the graph, coordinates)
 - identify the y intercept (on the graph, coordinates)
 - identify the vertex (on the graph, coordinates)
 - write the equation for the axis of symmetry
 - write the domain and range

$$y = \frac{1}{2}x^2 + 2x - 6$$

3. Find the quadratic equation [use regression skills] and draw the graph for the following:

X	Y
-3	0
-2	-2
0	0
1	4

a) Equation:

$$y = ax^{2} + bx + c$$
$$a =$$
$$b =$$
$$c =$$

- b) Plot the given points, plot at least 3 more points and draw the graph.
- c) Find the vertex.

- 4. A football player stands on the top of the bleachers and throws the football towards the field. The height of the football is given by the equation: $h = -0.4t^2 + 2.1t + 3.25$, where *t* is the time in seconds and *h* is the height of the football in metres. [$y = -0.4x^2 + 2.1x + 3.25$]
 - a) Sketch the path of the football using the window:

X: [-2,8,1] Y:[-2,8,1]

- b) Find the height the football was thrown from [use Trace].
- c) Find the maximum height of the football [use Maximum].
- d) Find how long the football is in the air [use Zero].
- e) Find when the football has a height of 2.0 metres [use Intersect].