Math 20-2

Name: \qquad
Quadratic Function Properties: Part Two

1. Given the graph of the function:

- find the vertex
- sketch in the axis of symmetry and write the equation for the axis of symmetry
- plot and identify $\mathbf{3}$ other points on the graph using the property of symmetry
- identify the x - intercepts (on the graph, coordinates)
- identify the y - intercept (on the graph, coordinates)
- write the domain and range

2. Given the equation of the quadratic function:

- find points to plot using algebra or trace or a table of values
- identify the x - intercepts (on the graph, coordinates)
- identify the y - intercept (on the graph, coordinates)
- identify the vertex (on the graph, coordinates)
- write the equation for the axis of symmetry
- write the domain and range

$$
y=\frac{1}{2} x^{2}+2 x-6
$$

X	Y
-6	
-4	
-2	
0	
2	
4	
6	

3. Find the quadratic equation [use regression skills] and draw the graph for the following:

X	Y
-3	0
-2	-2
0	0
1	4

a) Equation:

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& a= \\
& b= \\
& c=
\end{aligned}
$$

b) Plot the given points, plot at least 3 more points and draw the graph.
c) Find the vertex.

4. A football player stands on the top of the bleachers and throws the football towards the field. The height of the football is given by the equation: $h=-0.4 t^{2}+2.1 t+3.25$, where t is the time in seconds and h is the height of the football in metres. $\left[y=-0.4 x^{2}+2.1 x+3.25\right]$
a) Sketch the path of the football using the window:
$\mathrm{X}:[-2,8,1]$
$\mathrm{Y}:[-2,8,1]$

b) Find the height the football was thrown from [use Trace].
c) Find the maximum height of the football [use Maximum].
d) Find how long the football is in the air [use Zero].
e) Find when the football has a height of 2.0 metres [use Intersect].

