Name: _____

Math 20-2 Quadratic Function Properties: Part Three

- 1. Given the equation of the quadratic function:
 - find points to plot using a mapping diagram and/or a table of values
 - identify the x intercepts (on the graph, coordinates)
 - identify the y intercept (on the graph, coordinates)
 - identify the vertex (on the graph, coordinates)
 - write the equation for the axis of symmetry
 - write the domain and range

$$y = -\frac{1}{2}x^2 + 2x + 6$$

2. The number of hamburgers sold at a concession stand is related to the price of the hamburgers as follows:

Price	\$3.00	\$3.25	\$3.75	\$4.50
Burgers Sold	500	475	425	350

a) Calculate the revenue for each burger price.

Price	\$3.00	\$3.25	\$3.75	\$4.50
Revenue	\$1500.00			

b) Find a quadratic function to represent the price and the revenue for the hamburger. State a window for this information and sketch your function:

X: [,] Y: []		1
- • [,,]		
	_	

- c) We know a \$3.00 hamburger price will generate revenue of \$1500. What other price will also generate revenue of \$1500?
- d) If you were the manager of the concession, what price would you set for the hamburgers to maximize the concession revenue?