$\qquad$

## Quadratic Function Properties: Part One

Given the graph of a quadratic function I can:

- find the x - intercepts
- find the $y$ - intercept
- find the vertex
- write the equation for the axis of symmetry
- plot and identify other points on the graph using the property of symmetry
- write the domain and range

Given the equation of a quadratic function I can:

- find points to plot using a mapping diagram and/or a table of values
- find the x - intercepts
- find the $y$ - intercept
- find the vertex
- write the equation for the axis of symmetry
- write the domain and range

I can use the regression feature on my calculator to find the quadratic equation for a set of data.
I can solve problems using properties of quadratic functions

- find maximum or minimum values and interpret their meaning
- find zeros for functions and interpret their meaning
- find $y$-values knowing $x$ - values (use the trace feature if necessary)
- find $x$-values knowing $y$-values (use the intersect feature if necessary)

1. Given the graph of the function:

- find the vertex
- sketch in the axis of symmetry and write the equation for the axis of symmetry
- plot and identify $\mathbf{3}$ other points on the graph using the property of symmetry
- identify the x - intercepts (on the graph, coordinates)
- identify the y - intercept (on the graph, coordinates)
- write the domain and range


2. Given the equation of the quadratic function:

- find points to plot using a mapping diagram and/or a table of values
- identify the x - intercepts (on the graph, coordinates)
- identify the y - intercept (on the graph, coordinates)
- identify the vertex (on the graph, coordinates)
- write the equation for the axis of symmetry
- write the domain and range

$$
y=x^{2}+4 x-5
$$

| $X$ | $Y$ |
| :---: | :---: |
| -6 |  |
| -5 |  |
| -4 |  |
| -3 |  |
| -2 |  |
| -1 |  |
| 0 |  |
| 1 |  |
| 2 |  |


3. Find the quadratic equation and draw the graph for the following:

| $\boldsymbol{X}$ | $\boldsymbol{Y}$ |
| :---: | :---: |
| $\mathbf{- 2}$ | 0 |
| $\mathbf{0}$ | -8 |
| $\mathbf{1}$ | -9 |
| $\mathbf{4}$ | 0 |

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& a= \\
& b= \\
& c=
\end{aligned}
$$



